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Outline

● Evolution of exoplanetary systems
● Frequency of exoplanets
● Interesting exoplanetary systems



  

Formation of exoplanetary systems

● Evolution in protostars with discs
● Two main theories:

- Core accretion (Safronov 1969, Pollack 
1996, ...)

- Gravitational instability (Kuiper 1951, 
Cameron 1978 )

● How do theories apply to real exoplanetary 
systems?



  

Let`s start from the beginning
(first steps in the planetary systems 

evolution)



  

Hayashi track (new system is born)

● Track in the HR diagram

along which T Tauri stars

move towards the MS
● The time and track depend on the mass of the 

young star
● Hayashi, 

http://articles.adsabs.harvard.edu/pdf/1961PAS
J...13..450H



  

Credit: https://www.atnf.csiro.au/outreach/education/senior/astrophysics/stellarevolution_formation.html



  

HD163296 disc with planets

● Structures in the disc observed by ALMA
● Rings formed by planetary system
● https://arxiv.org/pdf/1812.04047.pdf

From Isella et al. 2018, https://arxiv.org/pdf/1812.04047.pdf



  

Young stars with discs

https://www.eso.org/public/images/eso1811a/  SPHERE ESO VLT instrument obseravtions

https://www.eso.org/public/images/eso1811a/


  

New star is born

● T Tauri type stars

 - young, active stars

 - collapsing gravitationally

 - masses < 3 Mʘ

 - with discs!

- Li abundant
● T Tauri stars become

later main sequence (MS)

stars
● Evolution to MS

10^5-10^8 years

Image: V1331 Cyg a young T Tauri star – pole onwards
https://www.nasa.gov/content/goddard/hubble-sees-a-young-star-take-center-stage



  

Disc imaging

● PDA 70

- imaged by VLT

(NACO, SPHERE)

- young object (5.4 Myr)

- disc present

- particle grains

estimated
● Hosts a planet

- anything between 
● 5-14 Jupiters masses

 



  

PD 70b

● And here is the planet….

M. Keppler et al. 2018 - https://www.eso.org/public/archives/releases/sciencepapers/eso1821/eso1821a.pdf



  

And there is another one

Benisty et al. 2021, https://doi.org/10.3847/2041-8213/ac0f83

https://doi.org/10.3847/2041-8213/ac0f83


  

And well, maybe discs forming 
moons?

Benisty et al. 2021, https://doi.org/10.3847/2041-8213/ac0f83

https://doi.org/10.3847/2041-8213/ac0f83


  

Planets are forming



  

Disc instability

● Gravitational collapse of the gas from the disc 
material

● Usually drives planet formation in outer parts of 
the disc

● Fairly fast process around a few thousands years
●  Jeans mass – if the mass of the object is larger 

than the Jeans mass then gravitational force 
starts to dominate



  

Core accretion

● Safronov 1972, Pollack 1996
● Small solid dust grains (less than micro meters) 

collide and grow into larger particles (dozens of 
kilometers) – planetesimals

● Gravity starts to shape a planetesimal
● Planetesimal grows into planetary core
● Usually drives formation in warm inner disc



  

Real exoplanets and formation 
hypothesis



  

The case of HR8799

● Intriguing system HR 8799 – A type 1.5 Solar 
masses star

● The system includes 4 gas giants within
● Masses between 5-10 Jupiter masses
● How did they form?

 - Core accretion, gravitational collapse or both?

 - were they migrating inwards or onwards?



  

The HR8799 system

Marois et al. 2010, Nature: https://arxiv.org/pdf/1011.4918.pdf 

Credit:
 https://www.nature.com/articles/nature09716.pdf



  

The HR8799 system

Marois et al. 2010, Nature: https://arxiv.org/pdf/1011.4918.pdf



  

The Fomalhaut system
● A forming planet b? A product of collision? Is there any 

other planet c – if yes then must be less massive. 

● Kalas et al 2008, Science, https://arxiv.org/abs/0811.1994

https://hubblesite.org/contents/news-releases/2008/news-2008-39.html - Credit NASA/ESA

https://hubblesite.org/contents/news-releases/2008/news-2008-39.html


  

And all turned to dust?

Bakos et al. 2020, PNAS: 
https://www.pnas.org/content/117/18/9712



  

The Fomalhaut system

● The mass of the object is about 2 masses of 
Jupiter

● Did the planet b form in situ by core collapse?
● Or was the planet b ejected from the system?
● Is there any other unseen planet closer to the 

star?
● If there is a c planet what would be its mass?
● Is it a planet or not?



  

Wandering planets
(Hot Jupiters case)



  

Migration

● Why are hot Jupiters so close to their stars?
● One of the theories is migration

Credit: Triaud, A. Migration of giants. Nature 537, 496–497 (2016)



  

Migration of HJs

● HJs in an open cluster M67 – approx. 4% occurance rate

● Host stars are as massive as the Sun

● Why is the occurance of HJs in cluster M67 higher than for 
normal FGK stars (about a 0.5-1%)?

● The interaction of stars in the cluster plays a role?

Brucalassi et al. 2016https://doi.org/10.1051/0004-6361/201527561

https://doi.org/10.1051/0004-6361/201527561


  

Important questions

● How do gas planets form?

- in situ?

- in outer regions and they migrated?
● How do gas planets and small planets live 

together? 
● What can tell us the orbital elements about the 

formation of the planetary system?



  

Could the HJ form in situ?

● It was widely accepted as unlikely

 - high temperatures close to star prevent the 
gravitational instability scenario

 - however, core accretion might be possible 
under some assumptions, perhaps... 

● But one would need a Super-Earth as a core for 
future hot Jupiter (Batygin et al. 2016: 
https://arxiv.org/pdf/1511.09157.pdf)



  

Formation in-situ?

Batygin et al. 2016: https://arxiv.org/pdf/1511.09157.pdf



  

In situ formation

● First the cores

of 15 M Earth

form
● Then the accretion

creates the envelope 

Batygin et al. 2016: https://arxiv.org/pdf/1511.09157.pdf



  

Possible scenarios for an in-situ 
option

Batygin et al. 2016: https://arxiv.org/pdf/1511.09157.pdf



  

Solar system example

● Recall Batygyn et al. 2016 describing a perturber 
in our Solar System on wide orbit

(Planet Nine) – 150-250 AU
● The planet Nine combines all above effects

 - it would have to be ejected (not in-situ)

 - it explains highly eccentric orbits of dwarf 
planets (Sedna etc….)

● But is it there? Or could it be out there?



  

Recalling HR 8799

● We know already HR 8799 system as an 
example of large orbit. So why not Planet Nine?

Maroise 2008, https://arxiv.org/pdf/0811.2606.pdf - grey lines Solar system gas planets and Pluto

https://arxiv.org/pdf/0811.2606.pdf


  

Back to Hot Jupiters
(large and small living together)



  

Wasp-47 system

● First system

with HJ, Super-Earths 

and a long periodic planet 

of Jupiter size.
● The Period of c

planet is 572 days
● But is this system unique or is it rather a common 

representative of the  formation process in-situ? We do 
not know, yet for sure.

Neveu-VanMalle 2018 https://arxiv.org/pdf/1509.07750.pdf



  

Wasp-47 system

● Is it rather an exception or a rule?
● Example of an in-situ formation?
● How did the system form?

Becker et al. 2015: https://iopscience.iop.org/article/10.1088/2041-8205/812/2/L18/pdf



  

Wasp-47 system

Alemenara et al. 2016:
https://www.aanda.org/
articles/aa/abs/2016/11/
aa29770-16/aa29770-
16.html

Vanderburg 2017, 
https://iopscience.iop.org/article/
10.3847/1538-3881/aa918b/pdf



  

Warm Jupiters



  

Warm Jupiters

● Gas giants with orbital periods 10-200 days

● HD 80606 b – 111 days period

 - binary component HD 80607

 - 4 Jupiter masses

 - 12 hrs. Transit

 - 0.93 eccentricity (very high)

● Orbital parameters

might be the key to formation?

● Discovery:

Naef et al. 2001

https://www.aanda.org/articles/aa/pdf/2001/32/aade293.pdf

Fossey et al. - https://arxiv.org/pdf/0902.4616.pdf



  

Orbit of HD80606b



  

Habitable zone HD80606 b

Kane, Stephen & Gelino, Dawn. (2012). The Habitable Zone and Extreme Planetary Orbits. 
Astrobiology. 12. 940-5. 10.1089/ast.2011.0798. 



  

A challenging transit

From Winn et al. 2009, https://arxiv.org/abs/0907.5205



  

HD 80606 b

From Winn et al. 2009, https://arxiv.org/abs/0907.5205



  

Spin orbit alignment
● HD 80606b

● RM effect shows

misalignment of the

rotational axes

● Misalignment might 

point towards migration

scenario

● Therefore, the better

the characteristics of

the orbital parameters

the better is the understanding

of the evolution

● Kozai-Lidov process migration

Fabrycky 2007:

https://arxiv.org/pdf/0705.4285.pdf 

Naoz et al 2016 (review)

https://arxiv.org/pdf/1601.07175.pdf

From Winn et al. 2009, https://arxiv.org/abs/0907.5205



  

R-M effect - info

Ohta et al. 2005: https://arxiv.org/abs/astro-ph/0410499



  

R-M effect

Ohta et al. 2005: https://arxiv.org/abs/astro-ph/0410499



  

R-M effect

Ohta et al. 2005: https://arxiv.org/abs/astro-ph/0410499



  

Examples of R-M

Winn et al. 2006: https://arxiv.org/pdf/astro-ph/0612744.pdf



  

Solar system compared (tilts)

https://wasp-planets.net/2018/12/30/solar-system-planet-tilts/



  

HD 80606b

● Which process is responsible for the high 
eccentricity?

● Did the planet form close to the star in a circular 
orbit?

● Is the Kozai-Lidov mechanism responsible for 
the HD 80606b orbital parameters – high 
eccentricity (perturber star HD 80607)?



  

Recap

Dawson 2018, https://arxiv.org/pdf/1801.06117.pdf



  

Another interesting group of planets
(moving towards smaller planets)



  

Ultra Short Period Planets



  

Ultrashort period planets (USPs)

● Small planets

often called

Lava worlds
● Orbital periods 

< 1 day
● Very close to host

stars
● Very high surface 

temperature
Winn et al 2020 https://arxiv.org/pdf/1803.03303.pdf



  

Composition of USPs 

Winn et al 2020 https://arxiv.org/pdf/1803.03303.pdf



  

Architecture of USP systems

● USP resides

usually in a 

system with

more planets
● USP is less

frequent with 

HJ planets

(only Wasp-47 
● system)

Winn et al 2020 https://arxiv.org/pdf/1803.03303.pdf



  

Formation scenarios

● In-situ – leads usually to several Super-Erath planets in the 
warm part of the disc

● Migrating through the disc towards inner part

(infrequent )
● Migrating giants provide material for the USP

(Wasp-47?)
● Tidal circularization – however most USPs are with 

companions
● Stripping the giant planet of their envelope once they migrate 

too close to the star



  

   Ultra-short planets

● See TESS USP

Vanderspeck et al. 2018, 

https://arxiv.org/abs/1809.07242



  

How about small planets?



  

Terrestrial planets

● They could form in-situ 

by accretion
● They could form with 

“help” of migrating giants
● They could form by

circularization of orbits
● They could form by 

evaporation of gas from

large inward migrating planet

Raymond et al. https://www2.mpia-hd.mpg.de/homes/beuther/raymond.pdf



  

And what do observations tell us?



  

How frequent are gas giants?

● The rate of Jupiter-sized planets around GFK 
stars is estimated to be around 1%

Wright et al. 2012, 
https://arxiv.org/pdf/1205.2273.pdf

● Are smaller planets more frequent?
● Jupiter-sized planets on long periodic orbits have 

a frequency of about 14% - see next slides.

 

https://arxiv.org/pdf/1205.2273.pdf


  

Planet frequency

● We have now larger data set
● HARPS and CORALIE data
● Planets are quite frequent, at least every 

second star (FGK) has at least one planet

Mayor et al 2012, A&A,  https://arxiv.org/pdf/1109.2497.pdf



  

Small planets vs. large planets

● Left: low mass vs. High mass, right: same but only for short 

periodic planets less than 100 days 

Mayor et al 2012, A&A,  https://arxiv.org/pdf/1109.2497.pdf



  

Small vs. Large 

● Metallicity of the system is a factor

● Large planets favor large metallicities

● Smaller planets are abundant also with lower metallicities

Mayor et al 2012, A&A,  https://arxiv.org/pdf/1109.2497.pdf



  

Small planets frequency

● Sample of 10 stars

hosting 29 planets
● Sensitivity to detect

10 M Earth planet 

is close to 100%
● A 3 M Earth planet

sensitivity is about 20%
● ESPRESSO is here now!

Mayor et al 2012, A&A,  https://arxiv.org/pdf/1109.2497.pdf



  

We have pretty good chances!

Mayor et al 2012, A&A,  https://arxiv.org/pdf/1109.2497.pdf



  

Next week(s)

● Composition of exoplanets
● Interesting exoplanetary systems
● Looking for the Solar System analogue
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