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Formation of exoplanetary systems

* Evolution in protostars with discs
* Two main theories:
- Core accretion (Safronov 1969, Pollack 1996, ...)
- Gravitational instability (Kuiper 1951, Cameron 1978 )

* How do theories apply to real exoplanetary systems?



Solar System formation

* Widely accepted formation theory is the nebular theory

* There are other alternative theories of formation such
as capture theory

* Nebular theory has still its flaws but the nebular theory
refined with new knowledge also from exoplanet

research can explain most accurately observed Solar
system features



Capture theory

* Woolfson 2017 https://arxiv.org/pdf/1709.07294.pdf
* It was proposed in early early sixties in the past century by M. Woolfson
* |t states that the Sun and a passing protostar interacted

* The matter from the Sun and from the protostar was the building stone
for planets

* Earth and Venus were created by collision of two large protoplanets

* Mars and Mercury were escaped moons by one of the collided planets
as well as dwarf planets


https://arxiv.org/pdf/1709.07294.pdf

Capture theory

* The encounter of stars is only less probable

* Hot gas would not contract to form planets but it
would expand



Nebular theory

e Solar nebula collapse
- what was the event causing the formation?
- perhaps supernova?

- how do we know? We do not but we have hints from material in
Solar System, namely short lived isotopes which needed to be
produced in Supernovae

* Banerjee et al. https://www.nature.com/articles/ncomms13639
Cameron & Truran 1977icar...30..447C


https://www.nature.com/articles/ncomms13639

Solar System formation

Credit NASA




Solar System formation

* Protoplanetary disc rotates

* Angular momentum conservation

* The sun and clumps of planets are formed

*Inner (rocky) planets and outer (gas) planets
*Beyond ice line ice giants formed

- Large planets migrated inwards and back outwards
- see e.g. Nesvorny et al. 2018 Nat Astronomy
https://arxiv.org/pdf/1809.04007.pdf

- Pierens & Raimond
https://www.aanda.org/articles/aa/pdf/2011/09/aal7451-11.pdf
- D Angelo

https://iopscience.iop.org/article/10.1088/0004-637X/757/1/50/meta


https://arxiv.org/pdf/1809.04007.pdf
https://www.aanda.org/articles/aa/pdf/2011/09/aa17451-11.pdf
https://iopscience.iop.org/article/10.1088/0004-637X/757/1/50/meta

Jumping Jupiter?

Migration of Jupiter and Saturn inwards and outwards (700M years)
Preventing growth of Mars

Ejection of 5" large planet?

- Batygin https://arxiv.org/pdf/1111.3682.pdf

- Nesvorny https://arxiv.org/pdf/1109.2949.pdf

Changing climate on Venus?

- https://iopscience.iop.org/article/10.3847/PSJ/abae63/pdf


https://arxiv.org/pdf/1111.3682.pdf
https://arxiv.org/pdf/1109.2949.pdf
https://iopscience.iop.org/article/10.3847/PSJ/abae63/pdf

Planet |X?

e Planet IX?

https://www.nature.com/news/polopoly fs/1.191
82!/menu/main/topColumns/topLeftColumn/pdf/
529266a.pdf?origin=ppub

- https://www.nature.com/news/evidence-grows-
for-giant-planet-on-fringes-of-solar-system-
1.19182


https://www.nature.com/news/polopoly_fs/1.19182!/menu/main/topColumns/topLeftColumn/pdf/529266a.pdf?origin=ppub
https://www.nature.com/news/polopoly_fs/1.19182!/menu/main/topColumns/topLeftColumn/pdf/529266a.pdf?origin=ppub
https://www.nature.com/news/polopoly_fs/1.19182!/menu/main/topColumns/topLeftColumn/pdf/529266a.pdf?origin=ppub

The mystery of Saturn’s rings

Young or old? Were the rings formed in the early history of the Solar System
or more recently?

The rings are composed from ice but if they were from the early Solar
System, there would be also some silicates and they would appear darker.....

Canup 2010, Nature, https://www.nature.com/articles/nature09661(
https://www.boulder.swri.edu/~robin/canup2010.pdf)

Charnoz et al.
- https://arxiv.org/abs/0809.5073
LHB role for formation of Saturn’s rings

Credit: Nature


https://www.nature.com/articles/nature09661
https://www.boulder.swri.edu/~robin/canup2010.pdf
https://arxiv.org/abs/0809.5073

The Saturn rings mystery

Or young....

Crida et al. 2019, Nature,
https://www.nature.com/articles/s41550-019-0876-y

The measured mass of the rings 10719 kg Is
consistent with young but also with old rings scenario

For old rings scenario a cleaning mechanism is
needed, to clean-up silicates


https://www.nature.com/articles/s41550-019-0876-y

Let s start from the beginning
(first steps In the planetary systems
evolution)



Hayashi track (new system iIs born)

* Track in the HR diagram
along which T Tauri stars
move towards the MS

* The time and track depend on the mass of the young star

e Hayashi,
http://articles.adsabs.harvard.edu/pdf/1961PASJ...13..450H



Theoretical Hayashi Tracks of Protostars

Effecthe Termparaturs, K
20,000 10,000 T D00 5, D00 4,000
-10— v |
-1 10
=y 104
_‘—I
10%

-2 15

.l
| 1
S
A— s [ e
10— 10°
12— 100®
T4
05 0.0 w0
7 | T
O5 BO AD

Credit: https://'www.atnf.csiro.au/outreach/education/senior/astrophysics/stellarevolution_formation.htmi



HD163296 disc with planets

e Structures In the disc observed by ALMA
* Rings formed by planetary system
. https [larxiv. org/pdf/1812 04047 .pdf
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https://www.eso.org/public/images/eso1811a/ SPHERE ESO VLT instrument obseravtions


https://www.eso.org/public/images/eso1811a/

New star IS born

e T Tauri type stars
- young, active stars
- collapsing gravitationally
- masses <3 M,

- with discs!

- Li abundant

e T Tauri stars become
later main sequence (MS)
stars

* Evolution to MS
10™-10" years

Image: V1331 Cyg a young T Tauri star — pole onwards
https://www.nasa.gov/content/goddard/hubble-sees-a-young-star-take-center-stage



Disc imaging

* PDA 70
- imaged by VLT
(NACO, SPHERE)
- young object (5.4 Myr)
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Fig. 8. Convolved ray-traced Qy-images evaluated at 0.7 um using different grain size distributions. Successively, the central source polarisation
emerging from the unresolved inner disk (radius 2 au) was subtracted using a U/g-minimisation. The lower right panel shows the VBB observation,
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Fig. 7. Linear polarisation degrees for silicates of different (semi-mono dispersive) grain sizes (left), and their phase function (right, normalised to
Z11(0)). The curves were computed for an observing wavelength of 0.7 gm.



PD 70b

* And here Is the planet....
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M. Keppler et al. 2018 - https://www.eso.org/public/archives/releases/sciencepapers/esol1821/eso01821a.pdf



And there Is another one
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Benisty et al. 2021, https://doi.org/10.3847/2041-8213/ac0f83


https://doi.org/10.3847/2041-8213/ac0f83
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https://doi.org/10.3847/2041-8213/ac0f83

Planets are forming



Disc instability

Gravitational collapse of the gas from the disc material
Usually drives planet formation in outer parts of the disc
Fairly fast process around a few thousands years

Jeans mass — if the mass of the object is larger than the
Jeans mass then gravitational force starts to dominate

M > (%)3/2(@?;7)1/2



Core accretion

Safronov 1972, Pollack 1996

Small solid dust grains (less than micro meters) collide
and grow into larger particles (dozens of kilometers) —
planetesimals

Gravity starts to shape a planetesimal
Planetesimal grows into planetary core
Usually drives formation in warm inner disc



Real exoplanets and formation
hypothesis



The case of HR8799

Intriguing system HR 8799 — A type 1.5 Solar masses star
The system includes 4 gas giants within

Masses between 5-10 Jupiter masses

How did they form?

- Core accretion, gravitational collapse or both?

- were they migrating inwards or onwards?



The HR8799 system
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Credit:
https://www.nature.com/articles/nature09716.pdf

November 1, 2009 L'—band

Marois et al. 2010, Nature: https://arxiv.org/pdf/1011.4918.pdf



The HR8799 system
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The Fomalhaut system

* Aforming planet b? A product of collision? Is there any
other planet c — if yes then must be less massive.

Formalha:r.
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https://hubblesite.org/contents/news-releases/2008/news-2008-39.html - Credit NASA/ESA


https://hubblesite.org/contents/news-releases/2008/news-2008-39.html

And all turned to dust?

Observations Obs. radial profiles

-

2004 Jun ACS/F814W

-

2004 Oct ACS/F606W

2064 ot Al /FB3AW g 2004 Oct ACS/FB14W
gt i g ook o 8

. | ey
2_00'6 ACS/P435W. 2006 ACS/F435W

-

2006 A(I:SIFGDGW 2006 ACS/FE0EW

2006 ACS/F814W

*

Y

o B
L
2010 ils‘ | 2010 STIS

X .

. r
20128TIS  * =« 2012 STIS

2013 STIS~ 2013 STIS

Bakos et al. 2020, PNAS: _ :
https://www.pnas.org/content/117/18/9712 " R

.0
0.0 0.5 1.0 0.0 0.5 1.0
offset (') offset ()




The Fomalhaut system

The mass of the object is about 2 masses of Jupiter
Did the planet b form In situ by core collapse?
Or was the planet b ejected from the system?
s there any other unseen planet closer to the star?
f there Is a c planet what would be its mass?

s it a planet or not?



JWST search

Ygouf et al. 2023

No Fomalhaut b
Consistent with dust
Interaction event
However, signal S7

might be a planet?

More planets possible due
to complex disc

But,

Declination

JWST/NIRCAM OBSERVATIONS OF FOMALHAUT

O JWST/NIRCam new detected point source location

) JWST/NIRCam + HST point sources locations

O JWST/NIRCam + HST + Keck point sources locations
l:‘ JWST/NIRCam + Keck point sources locations
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https://arxiv.org/pdf/2310.15028.pdf
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Wandering planets
(Hot Jupiters case)



Migration

* Why are hot Jupiters so close to their stars?

* One of the theories Is migration

Credit: Triaud, A. Migration of giants. Nature 537, 496-497 (2016)



Migration of HJs

HJs in an open cluster M67 — approx. 4% occurance rate
Host stars are as massive as the Sun

Why Is the occurance of HJs in cluster M67 higher than for
normal FGK stars (about a 0.5-1%)?

The interaction of stars in the cluster plays a role?
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Brucalassi et al. 2016https://doi.org/10.1051/0004-6361/201527561


https://doi.org/10.1051/0004-6361/201527561

Important questions

* How do gas planets form?
- In SItu?
- In outer regions and they migrated?
* How do gas planets and small planets live together?

 What can tell us the orbital elements about the
formation of the planetary system?



Could the HJ form In situ?

* It was widely accepted as unlikely

- high temperatures close to star prevent the gravitational
Instability scenario

- however, core accretion might be possible under some
assumptions, perhaps...

* But one would need a Super-Earth as a core for future hot
Jupiter (Batygin et al. 2016:
https://arxiv.org/pdf/1511.09157.pdf)



Planet Mass (Muyp)
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In situ formation

* First the cores

of 15 M Earth | _

form 8. W_&
 Then the accretion 3 '

creates the envelope  ° = B e

Batygin et al. 2016: https://arxiv.org/pdf/1511.09157.pdf



Possible scenarios for an in-situ
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conglomeration. Meanwhile, the star undergoes gravitational contraction and loses angular momentum, thereby shedding its quadrupole
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Batygin et al. 2016: https://arxiv.org/pdf/1511.09157.pdf



Solar system example

* Recall Batygyn et al. 2016 describing a perturber in our Solar
System on wide orbit

(Planet Nine) — 150-250 AU
* The planet Nine combines all above effects
- it would have to be ejected (not in-situ)
- it explains highly eccentric orbits of dwarf planets (Sedna etc....)

 Butis it there? Or could it be out there?



Recalling HR 8799

* We know already HR 8799 system as an
example of large orbit. So why not Planet Nine?
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https://arxiv.org/pdf/0811.2606.pdf

Back to Hot Jupiters
(large and small living together)



Wasp-4/7 system
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* But is this system unique or is it rather a common representative of the
formation process in-situ? We do not know, yet for sure.



Wasp-4/7 system

* |s it rather an exception or a rule?
 Example of an in-situ formation?
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Wasp-4/7 system
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Warm Jupiters



Warm Jupiters

* Gas giants with orbital periods 10-200 days "o HDBOB06/Ref2
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EYES ON EXOPLANETS
N(;sf‘ beta

Orbit of HD80606b

HOME BROWSE PLANETS MISSIONS Q
Bl Habitable Zone

HD 80606 b
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from Earth
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arth
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Mars
1 planet orbiting a G-type star, 217 light-years from Earth.

VIEW

C.

Planet System

COMPARE TO OUR SOLAR SYSTEM

What am | looking at ?




Habltable zone HD80 06 b

Kane, Stephen & Gelino, Dawn. (2012). The Habitable Zone and Extreme Planetary Orbits. Astrobiology. 12. 940-5.
10.1089/ast.2011.0798.



A challenging transit
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HD 80606 b
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Spin orbit alignment

HD 80606b

RM effect shows
misalignment of the
rotational axes
Misalignment might
point towards migration
scenario

Therefore, the better

the characteristics of

the orbital parameters

the better is the understanding
of the evolution

Kozai-Lidov process migration
Fabrycky 2007:
https://arxiv.org/pdf/0705.4285.pdf
Naoz et al 2016 (review)
https://arxiv.org/pdf/1601.07175.pdf

From Winn et al. 2009, https://arxiv.org/abs/0907.5205

Radial velocity [m s™']

Radial velocity [m s™]

350

300

250

200

-3 -2 —1 O 1 2
Time since midtransit [days]

| ++*ﬂ’:?r-f-;4//‘+\‘\‘“

—10 -5 0 S
Time since midtransit [hr]

o



R-M effect - Info

Z 1
normal unit vector
of the planetary orbit
projected on xz plane

_ pericentel :
 pericenter

apocenter

v
observer’s
direction

Ohta et al. 2005: https://arxiv.org/abs/astro-ph/0410499
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Examples of R-M
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Winn et al. 2006: https://arxiv.org/pdf/astro-ph/0612744.pdf




Solar system compared (tilts)
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James O'Donoghue / NASA -- T: @physicsJ 1G: jameslikesspace

https://wasp-planets.net/2018/12/30/solar-system-planet-tilts/




HD 80606Db

* Which process is responsible for the high
eccentricity?

* Did the planet form close to the star in a circular
orbit?

* |s the Kozal-Lidov mechanism responsible for the
HD 80606b orbital parameters — high eccentricity
(perturber star HD 80607)?
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Figure 1 Three origins hypotheses for hot Jupiters
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Another interesting group of planets
(moving towards smaller planets)



Ultra Short Period Planets



Ultrashort period planets (USPs)

Small planets
often called

Lava worlds
Orbital periods
<1 day

Very close to host
stars

Very high surface
temperature
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Composition of USPs
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Architecture of USP systems

 USP resides
usually in a
system with
more planets

« USP is less
frequent with
HJ planets
(only Wasp-47

e system)
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Winn et al 2020 https://arxiv.org/pdf/1803.03303.pdf
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Formation scenarios

* In-situ — leads usually to several Super-Erath planets in the warm part of the
disc

* Migrating through the disc towards inner part
(infrequent )
* Migrating giants provide material for the USP
(Wasp-477?)
 Tidal circularization — however most USPs are with companions

 Stripping the giant planet of their envelope once they migrate too close to the
star



Ultra-short planets

» See TESS USP
Vanderspeck et al. 2018,
https://arxiv.org/abs/1809.07242



How about small planets?



Terrestrial planets

* They could form in-situ

=
o

Collisions |

by accretion

0.1¢

Semi-major axis [AU]
=

05 —T1.0 15

* They could form with

- - - 16
“help” of migrating giants eI R — ot e |
Si1o0f et masae
* They could form by i R :
. . . . g 2:_.:r:-.r| — ) p
circularization of orbits °G o5 T 5

Time [million years]

o————o0 O O e : :
* They could form by Soes 52 © @ ¢ *

: o o &2
evaporation of gas from Srmatation &

0 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45
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large inward migrating planet

Fig. 6.— Formation of a system of hot Super Earths by type
1 migration. The top panel shows the evolution of the embryos’
orbital radii and the bottom panel shows the mass growth. The red.
green and blue curves represent embryos that coagulated into the
three most massive planets. All other bodies are in black. Only the
most massive (red) planet grew large enough to trigger outward
migration before crossing into a zone of pure inward migration.

Raymond et al. https://www2.mpia-hd.mpg.de/homes/beuther/raymond.pdf From Cossou er al. (2013).



And what do observations tell us?



How frequent are gas giants?

* The rate of Jupiter-sized planets around GFK stars is
estimated to be around 1%

Wright et al. 2012, https://arxiv.org/pdf/1205.2273.pdf
* Are smaller planets more frequent?

 Jupiter-sized planets on long periodic orbits have a
frequency of about 14% - see next slides.


https://arxiv.org/pdf/1205.2273.pdf

Planet frequency

* We have now larger data set
* HARPS and CORALIE data
* Planets are quite frequent, at least every

Table 1. Ooourmenos frequency of stars with at lzast one planet in the defined region. The results for various regions of the mg sing —
log P plane are given.

Mlass limits | Period limit | Planetary raie based on FPlametary raie Commenis
published plansts including candidates

= S M = Il years 91T % I =017% Gaseous giant planeis

= DD MW < 10 years DT 213 % 27T+ 1.3% Craseous giant planets

= 50 Mg = 11 days O.BD = 036 5% 089 + 036 9% Hot gaseouws giant planets
Ay masses | = 10 years 652 = 6.5 9 T5.1 =T 4% A1 7 detectable™ planets with P = 10 years
Ay masses | = 100 days 5006 =T.4 % 57.1 = B.O5% At beast 1| planet with P = 100 days
Ay masses | < 100 days GED + 11.7 % GED + 11.6% F and (5 stars only
Ay masses | = 100 days 411 = 11 4% 52T+ 153 2% K. stars only

= 3 Mg = 1M days T2 = RS @ 541 =9.1% Super-Earths and MMepiune -mass planets on tight orbits

= 3 Mg = 50 days FIRB=T.1% 450 = TR % Axs defined in Lovis et al. (2009)

Mayor et al 2012, A&A, https://arxiv.org/pdf/1109.2497.pdf
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Small planets vs. large planets

* Left: low mass vs. High mass, right: same but only for short
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Small vs. Large

Metallicity of the system is a factor
Large planets favor large metallicities

Smaller planets are abundant also with lower metallicities

15

N
o
T
|

10

15— .

# planets
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T T

# Jupiter & cumulative rate [%]
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T T

| | TR . [
1.0 10.0 100.0 1000.

—0.5 L) 0.5
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Fe/H [dexd

Mayor et al 2012, A&A, https://arxiv.org/pdf/1109.2497.pdf



Small planets frequency

 Sample of 10 stars
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Mayor et al 2012, A&A, https://arxiv.org/pdf/1109.2497.pdf



We have pretty good chances!
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Mayor et al 2012, A&A, https://arxiv.org/pdf/1109.2497.pdf



Next week(s)

 Composition of exoplanets
* |nteresting exoplanetary systems
* Looking for the Solar System analogue
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