Exoplanets

Lecture 3/4 Winter Semester 2021/2022 15.10.2021 & 5.11.2021

Outline

- Spectrographs and how do they work?
- CCD/NIR detectors
- Photometry and exoplanets detection
- This will be pain but you will be ready for the exoplanet talk

Spectrographs, how do they work?

- Components
	- lens
	- fiber/slit
	- prism/grism/grating
	- detector (now CCD)
- Physics behind the spectrograph
	- diffraction equation

 $n\lambda$ = d sin θ

Diffraction on grating

If interested, read more here: http://web.mit.edu/8.02t/www/802TEAL3D/visualizations/coursenotes/modules/guide14.pdf

Echelle Spectrographs

Blazed grating with many grooves

Crossdispersers

- Orders will overlap
- Crossdisperser prism separates them

Echellogram

Main parameters of the spectrograph

- Fiber or slit size
- Fiber avoids too many optical surfaces
- Resolving power $R = \lambda/\Delta\lambda = nN$ (N number of grooves) - separation between two spectral lines considered as just resolved
- \cdot R < 1000 low resolution
- \cdot 1000 < R < 10000 intermediate resolution
- \cdot R $>$ 10000 high resolution

Effect of the resolving power

Graph by: P. Figueira

Fiber vs. classical (Perek 2m)

• Classical

Doppler effect

- $Δλ/λ=ν/c$ (non relativistic)
- First we need to perfectly calibrate the wavelength (see Lecture 2)
- Then we can measure the velocities, well shifts in wavelength due to the movement of the object
- Let's have a look how to calibrate the wavelengths
- Could you find out the link between R and v?

How to precisely calibrate

ThAr lamp

- Th-Ar gas
- Many emission lines
- Precise atlas for the
- Wavelegth calibration
- \bullet Calibration taken before science or simultaneous (see later fiber fed)

Reference atlas

pixel

Wavelength solution

Iodine

From A. Hatzes: The detection of extrasolar planets using precise stellar radial velocities

Simultaneous ThAr calibration

Frame : b0395 ldentifier $\sim 10^7$ ITT-table : ramp.itt LUT-table : heat Coord inates : 3.75, -6.97 : 3.735, 6.965 Pixels : 1, 1 : 500, 930 Cut values : 0, 20000 User : feros

How can we measure RVs

- Cross correlation method
- One spectrum is the reference
- Other spectra are cross correlated with the reference
- Measuring relative shifts in RVs
- Using additionally Telluric (sky) lines for correction of the instrumental effects

Telluric lines

- Sky lines
- They do not move because the sky is rotating with the Earth
- They should thus be at same wavelength at every frame
- If not, the shift is due instrumental effects
- Fig. From Catanzaro et al. 1998

Telluric lines

• Red part of OES spectrum with telluric lines (black lines at the top in the continuum)

The Cross Correlation Method

Images: A. Hatzes

OES at Perek telescope

Table 3 **Instrumental Characteristics of OES**

Figure 2. OES light comes from the Coudé room through the slit A to collimator B. From the collimator the light beam travels to an échelle grating C and later to a parabollic mirror D and a plane mirror E. Second collimator F is in front of the cross-disperser which is the last element before the CANON lense objective H with a detector. Courtesy of Mirsolav Šlechta. (A color version of this figure is available in the online journal.)

OES

OES with lodine

Processed by Artie Hatzes

Hot Jupiter from TESS/OES

HARPS at La Silla

HARPS planets

- Proxima Cen b
- Earth sized planet (1.3Mearth)
- M dwarf star
- In the Habitable zone

Image from ESO Graph from Anglada Escude et al 2016, Nature

ESPRESSO

- Located at ESO Paranal
- Unprecedented precision cm/s
- Using up to 4 8-m telescopes together

ESPRESSO parameters

UTs working together

Between the telescopes and the spectrograph

Spectrograph (ESPRESSO)

Exciting planets with ESPRESSO

- Alpha Cen b
- Is there another planet with 0.5 M Earth and 5 days period?

Mascareno et al. 2020, A&A, 639, 77

Accuracy of spectrographs

- Depends on the Signal to noise
- Depends on the stability of the spectrograph (vacuum, temperature control, etc..)
- Accuracy is given by:

- C is instrument specific constant, R is resolving power, Δλ wavelength range of the spectrograph

$$
\sigma_{\rm RV} = C \times (S/N)^{-1} \times \Delta \lambda^{-0.5} \times R^{-1.5}
$$

https://ui.adsabs.harvard.edu/abs/1992ESOC...40...17G/abstract

Photometric camera

• Photoelectric effect

 \bullet

The photomultiplier in astronomy

Computer History Museum Mountain View, Calif., U.S.

DESY Zeuthen

The CCD

Kodak

- Developed in 1969 by AT & T's Bell
- · silicon substrate
- large chip arrays
- large FoV
- high QE
- linear
- sensitivities in optical till 1.1 micron
- mostly linear in dynamic range

Omegacam at Paranal - ESO

Nice reading:

- Detector consists of pixels of microns size
- Photodiodes sit in p-Silicon substrate
- A gate is an electrode controlling the charge transfer in the Si substrate
- Photon creates a pair hole + electron in Silicon substrate
- Electron moved to the surface, hole to the deeper substrate $-$ electrons kept in the potential well
- Voltage applied on the gates to move the charge to the register $=$ readout
- Why is CCD good in optical?
- Si bandgap about 1.1eV energy < 1.1 micron = **OPTICAL**
- To release electron in a Si semiconductor an incident photon needs to carry at least 1.1eV

http://www.physics.udel.edu/~jlp/classweb/ccd.pdfenergy or higher!

Image by NIKON

Quantum efficiency, sensitivity **CCD Spectral Sensitivities**

http://www.olympusmicro.com/primer/digitalimaging/concepts/guantumefficiency.html

IR detectors (1+ microns)

- Extremely important for exoplanets as the planetary radiation is usually peaking in NIR
- Thermal noise contributing significantly to the error budget
- Are useful for detection of exoplanetary atmospheres
- Are useful for monitoring of day night variations

IR detectors (NO CHARGE TRASNFER)

- no charge transfer
- but photoelectric effect in charge!
- electronic readout
- typically Id and Hg due to suitable band gaps
- cooling required

HgCdTe $0.48 \text{ eV} = 2.55 \text{ }\mu\text{m}$ InSb 0.23 eV = $5.4 \mu m$

IR detectors

Readouts NON-Destructive

- DCS
- Fowler

DIT vs. NDIT

Temperature sensitive

- high sky counts
- instrument/telesc. heat

3+ micron

nodding/chopping M2/telescope offsets Cooling + vacuum for NIR detectors is a must!

Joyce, D., NOAO Gemini data workshop 2010

From photon to the light curve

FLAT FRAMES

• Schematic way – photometric data reduction

https://astroblueowl.wordpress.com/2016/03/05/image-processing-in-astrophysics/

Image characteristics

 \cdot SNR = signal to noise ratio

- Poisson noise – sqrt(Signal)

- \cdot PSF point-spread-function of stars
- Various kinds of noises $-$ shot noise (photon noise), red noise, pink noise, dark noise, bias

PSF and the seeing/AO

Aperture photometry

- Measuring the flux in the aperture around stellar SPF
- The flux is sky subtracted

Illustraton of noises

g. 1. The orientation of BEST II LRa02 subfields with respect CoRoT's LRa2b field (coordinates J2000.0).

ie field of view (FOV) of the system covers $1.7^{\circ} \times 1.7^{\circ}$ on \cdot Kabath et al. 2009

Flux vs. magnitude

• Flux is linear, you can take flux of two stars and divide etc...

• Magnitude is logarithmic!! Be sure you eaither work with flux or with magnitudes

• $m = -2.5xlog(F/F0)!!$

From image till LC

· Gibson et al. 2014 HAWKI Wasp-19b

1.015 1.01 6.99 0.98 ā 0.66 0.68
HD-2454921

Figure 3. Raw VLT/HAWK-I light curve of the secondary transit of WASP.19. The dushed dotted lines show the expected start and end of transit, assuming the planet is in a circular orbit. A

LC with Perek telescope differential photometry

Figure: M. Blazek

Ground based exciting detections

Trappist-1 – Gillon et al., 2016, Nature, Temperate Earth-sized planets transiting a nearby ultracool dwarf star

Images: ESA/NASA and ESO

Space missions

- Advantage of continuous coverage (more or less)
- No atmosphere no additional noise source
- Unprecedented precision
- Constrained by their orbits, by fuel, by their cost
- COROT, KEPLER, TESS

Space based exciting detections

- Ultra short period planet, TESS LHS3844 b
- 1.5 Mearth
- Period $= 11$ hours

Vanderspeck et al. 2018, ApJL - https://arxiv.org/abs/1809.07242

Recap

- For transits detection as many star as possible
	- favoring CCD over photomultiplier
	- more comparison sources on frame, saves time
- High duty cycle needed (many frames in short time) - CCD capable of many exposures
- Bright targets needed for ground based follow-up

Reading

- [http://slittlefair.staff.shef.ac.uk/teaching/phy217/l](http://slittlefair.staff.shef.ac.uk/teaching/phy217/lectures/instruments/L17/index.html) [ectures/instruments/L17/index.html](http://slittlefair.staff.shef.ac.uk/teaching/phy217/lectures/instruments/L17/index.html)
- [http://astronomy.nmsu.edu/cwc/Teaching/ASTR](http://astronomy.nmsu.edu/cwc/Teaching/ASTR605/Lectures/spectra.pdf) [605/Lectures/spectra.pdf](http://astronomy.nmsu.edu/cwc/Teaching/ASTR605/Lectures/spectra.pdf)
- [http://www.iastro.pt/research/conferences/faial2](http://www.iastro.pt/research/conferences/faial2016/files/presentations/CE3.pdf) [016/files/presentations/CE3.pdf](http://www.iastro.pt/research/conferences/faial2016/files/presentations/CE3.pdf)
- http://web.ipac.caltech.edu/staff/fmasci/home/ astro_refs/aperture_phot2.pdf

Next week

- Tour of OES facilities
- Detection process of an exoplanetary candidate
- How to get the space mission data?